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Abstract
This contribution describes new features of the atomic Wehrl entropy in a
multi-quanta two-level system in the presence of the Kerr medium. A definition
of the atomic Wehrl entropy is presented for this system, based on the atomic
Q-function as information measurement about the atomic phase space. The
influence of the nonlinear interaction of the Kerr medium, Stark shift, one and
two-photon processes and the detuning parameters on the properties of the
atomic Wehrl entropy is examined. The atomic Wehrl entropy gives equivalent
results to the von Neumann entropy.

PACS numbers: 42.50.Dv, 03.65.Ud, 03.67.−a, 32.80.−t

1. Introduction

Different definitions for entropy have been introduced. The most famous one is the von
Neumann entropy [1, 2]. The Wehrl entropy was introduced as a classical information
entropic approach to deal with quantum fields [2, 3]. The Wehrl entropy of Bloch coherent
state, which is called the atomic Wehrl entropy, has been introduced [4].

The von Neumann entropy, which is used to measure the purity of the quantum state
and entanglement between the atom and the field, has been discussed extensively (see, e.g.,
[5–8]). In order to measure some phenomena on phase space such as purity, entropy, phase
locking, phase properties, etc, we have to use some new measurements different from the von
Neumann entropy such as the Wehrl entropy [9–12]. These phenomena are very important in
the field of quantum information and computation [13], and have been discussed in different
initial states of the field [11, 12].

Wehrl’s entropy of squeezed states was first calculated in the context of entropic
uncertainty relations [3]. The problem as to whether the Wehrl entropy can provide a reasonable
classification of states with respect to their nonclassical behaviour has been investigated [14].
To check such a possibility, the explicit values of the Wehrl entropies for various quantum
states of light were calculated. Also the usefulness of this concept as a compact yet very
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informative measure describing properly the time evolution of many quantum systems was
clearly demonstrated by analysing the dynamics of two simple but nontrivial quantum optical
examples: the formation of finite superpositions of coherent states in a Kerr-like medium [9],
and the non-unitary evolution of the one-mode electromagnetic field in the Jaynes–Cummings
model [10]. In both cases the Wehrl entropy gives a very transparent description of the relevant
dynamics.

The aim of this paper is to investigate the atomic Wehrl entropy of a two-level atom
as a measure of atomic phase space uncertainty. We examine the influence of a nonlinear
medium, detuning parameter and Stark shift on the properties of atomic Wehrl density in
both the one- and two-photon processes. The structure of this paper is as follows. In
section 2, we present a general model for the interaction between a two-level atom and a
quantized electromagnetic field. The definition of the atomic Wehrl entropy and atomic Wehrl
density based on the atomic Q-function definition is introduced in section 3. Finally the
numerical results and discussion are presented in section 4.

2. The model

In this section, we briefly review a general model for the interaction between a two-level
atom and a quantized electromagnetic field. In the rotating wave approximation, the total
Hamiltonian can be written as [1]

H = h̄ωF (â†â + kσ̂z) + h̄�1σ̂z + h̄â†â(s1|e〉〈e| + s2|g〉〈g|)δ(k − 2)

+ �â†2â2 + h̄λ[âkσ̂+ + â†kσ̂−] (1)

where ωF is the field frequency, â and â†, respectively, are the annihilation and creation
operators for the mode of the cavity field satisfying [â, â†] = 1. In the Hamiltonian (1), we
denote by � the dispersive part of the third-order nonlinearity of the Kerr-like medium, s1

and s2 are the parameters describing the intensity-dependent Stark shifts of the two levels
that are due to the virtual transitions to the intermediate relay level when k = 2 (i.e. the
two-photon process). Also, σ̂± and σ̂z are the atomic peseudo-spin operators. We define the
detuning parameter �1 = ωA−kωF , where k is the photon multiplicity and ωA is the transition
frequencies between the levels. We consider the initial state of the atom to be in a coherent
superposition state of the excited state |e〉 and ground state |g〉, namely

|ϑ, ϕ〉 = cos(ϑ/2)|e〉 + sin(ϑ/2) exp(−iϕ)|g〉 (2)

where ϕ is the relative phase of the two atomic levels and ϑ denotes the polarization direction.
When ϑ → 0, the excited state is given but when ϑ → π , the wavefunction describes the
ground state of the atom.

Also, we assume that the field is initially in the coherent state,

|α〉 =
∞∑

n=0

bn|n〉 =
∞∑

n=0

exp

(
− n̄

2

)
αn

√
n!

|n〉 (3)

where bn describes the amplitude of state |n〉 of the mode, α = √
(n̄) exp(iη). n̄ and η

represent the initial average photon number and the phase of the mode, respectively. At time
t = 0 the field–atom system is in a pure state, thus the initial density operator of the system
is given by ρ̂(0) = ρ̂A(0) ⊗ ρ̂F (0), where ρ̂F (0) = |α〉〈α| and ρ̂A(0) = |ϑ, ϕ〉〈ϑ, ϕ|. ρ̂(0)

describes the initial value for the field–atom density operator. At any time t > 0 the solution
of the Schrödinger equation under the Hamiltonian (1) can be written as [1, 15, 16, 18, 19]

|AF(t)〉 =
∞∑

n=0

{e(n, t)|n, e〉 + g(n, t)|n, g〉} (4)
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where the coefficient e(n, t) and g(n, t) are given by

e(n, t) = e−iλtRn

{
bn

(
cos ϒn − i

δn

�n

sin ϒn

)
cos(ϑ/2) − ivnbn+k

�n

sin ϒn sin(ϑ/2) e−iϕ

}
(5)

g(n, t) = e−iλtRn−k

{
bn

(
cos ϒn−k + i

δn−k

�n−k

sin ϒn−k

)
sin(ϑ/2) e−iϕ

− ivn−kbn−k

�n−k

sin ϒn−k cos(ϑ/2)

}
(6)

where

Rn = χ

4
[(2n + k − 1)2 + k2 − 1] +

1

2
[nβ2 + (n + k)β1]δ(k − 2)

δn = �

2
− χk[2n + k − 1] +

1

2
[nβ2 − (n + k)β1]δ(k − 2)

vn =
√

(n + k)!

n!

�n =
√

δ2
n + v2

n

ϒn = λt�n

(7)

� = �1/λ, χ = �/λ and βi = si/λ, i = 1, 2. Here λ�n is the generalized Rabi frequency
which depends on the detuning parameter, Stark shift parameters and medium nonlinearity.
Equation (4) represents the state of the field system and atom–field system at any time during
the evolution. It is to be noted that this result (solution (4)–(7)) generalizes earlier results
[20–23]; also it should be emphasized that this result is a special case of the solution given
in [1].

With the wavefunction |AF(t)〉, any property related to the atom and the field can be
calculated. The reduced density matrix of the field–atom system can be written as

ρF (t) = trA[|AF(t)〉〈AF(t)|]

=
∞∑

n=0

∞∑
m=0

{e(n, t)∗
e (m, t)|n〉〈m| + g(n, t)∗

g (m, t)|n〉〈m|}

= |C〉〈C| + |S〉〈S| (8)

where

|C〉 =
∞∑

n=0

e(n, t)|n〉 |S〉 =
∞∑

n=0

g(n, t)|n〉 (9)

〈n|ρF (t)|m〉 = e(n, t)∗
e (m, t) + g(n, t)∗

g (m, t). (10)

Also, the reduced density matrix of the atom can be written as

ρA(t) = trF [|AF(t)〉〈AF(t)|]

=
∞∑

n=0

{e(n, t)∗
e (n, t)|e〉〈e| + g(n, t)∗

g (n, t)|g〉〈g|

+ e(n, t)∗
g (n, t)|e〉〈g| + ∗

e (n, t)g(n, t)|g〉〈e|}. (11)

Then, we can calculate the expectation values for any function F(â, â†) in the usual manner:

〈F 〉 = trF [ρF (t)F (â, â†)] =
∞∑

n=0

∞∑
m=0

〈n|ρF (t)|m〉〈m|F(â, â†)|n〉 (12)
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while for any atomic variable G we use

〈G〉 = trA[ρA(t)G]. (13)

Once these quantities have been calculated, we can discuss many features concerning the field
and the atom. By using the reduced density operators ρA(t) given by equation (11), we can
evaluate the expectation values of the atomic variables 〈σx(t)〉, 〈σy(t)〉 and 〈σz(t)〉, and we
arrive at the following expressions:

〈σx(t)〉 = trA[ρA(t)σx] =
∞∑

n=0

{UR cos[λt (Rn − Rn−k)] + UV sin[λt (Rn − Rn−k)]} (14)

〈σy(t)〉 = trA[ρA(t)σy] =
∞∑

n=0

{UR sin[λt (Rn − Rn−k)] − UV cos[λt (Rn − Rn−k)]} (15)

UR = sin(ϑ)

2

(
[Xn cos ϕ + Yn sin ϕ]|bn|2 +

vnvn−k

�n�n−k

|bn−kbn+k| sin ϒn sin ϒn−k cos(ϕ − kη)

)

− vn−k

�n−k

|bnbn−k| sin ϒn−k cos2(ϑ/2)

(
cos ϒn sin kη − δn

�n

sin ϒn cos kη

)

+
vn

�n

|bnbn+k| sin ϒn sin2(ϑ/2)

(
cos ϒn sin kη − δn−k

�n−k

sin ϒn−k cos kη

)

UV = sin(ϑ)

2

(
[Xn sin ϕ − Yn cos ϕ]|bn|2 − vnvn−k

�n�n−k

|bn−kbn+k| sin ϒn sin ϒn−k sin(ϕ − kη)

)

+
vn−k

�n−k

|bnbn−k| sin ϒn−k cos2(ϑ/2)

(
cos ϒn cos kη +

δn

�n

sin ϒn sin kη

)

− vn

�n

|bnbn+k| sin ϒn sin2(ϑ/2)

(
cos ϒn−k cos kη +

δn−k

�n−k

sin ϒn−k sin kη

)

〈σz(t)〉 = trA[ρA(t)σz] = 1

2

∞∑
n=0

|bn|2
{(

cos2 ϒn +
δ2
n

�2
n

sin2 ϒn

)
cos2(ϑ/2)

−
(

cos2 ϒn−k +
δ2
n−k

�2
n−k

sin2 ϒn−k

)
sin2(ϑ/2)

}

+
∞∑

n=0

{
|bn+k|2

(
vn

2�n

sin ϒn sin(ϑ/2)

)2

− |bn−k|2
(

vn−k

2�n−k

sin ϒn−k cos(ϑ/2)

)2
}

− sin(ϑ)

∞∑
n=0

{(
vn

4�n

|bnbn+k| sin 2ϒn

− vn−k

4�n−k

|bnbn−k| sin 2ϒn−k

)
sin(ϕ − kη)

−
(

vnδn

2�2
n

|bnbn+k| sin2 ϒn − vn−kδn−k

2�2
n−k

|bnbn−k| sin2 ϒn−k

)
cos(ϕ − kη)

}
(16)
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Xn = cos ϒn cos ϒn−k − δnδn−k

�n�n−k

sin ϒn sin ϒn−k

Yn = δn

�n

sin ϒn cos ϒn−k +
δn−k

�n−k

sin ϒn−k cos ϒn.


 (17)

By using the expectation values of the atomic variables, we can calculate the atomic Wehrl
density and atomic Wehrl entropy of a two-level atom in the presence of the Kerr medium and
Stark shift; this will be the subject of the following sections.

3. Atomic Q-function, atomic Wehrl-density Sq(t) and atomic Wehrl entropy SAW(t)

We use the Q-function which will be the basis for calculating the atomic Wehrl entropy. This
quasiprobability distribution is defined as [22, 23]

QA(�,�, t) = 1

π
〈�,�|ρA(t)|�,�〉 (18)

where ρA(t) is the reduced density of the atom given by equation (11) and ρ
A
(0) = |ϑ, ϕ〉〈ϑ, ϕ|,

and |ϑ, ϕ〉 represents the atom initially in the superposition state which it defined in
equation (2), with a similar definition for the atomic coherent state |�,�〉, namely

|�,�〉 = cos(�/2)|e〉 + sin(�/2) ei�|g〉 (19)

where � and � are the atomic phase space parameters. Then we recast equation (18) in the
following form:

QA(�,�, t) = 1

π

{
1

2
+ 〈σz(t)〉 cos � + [〈σx(t)〉 cos � + 〈σy(t)〉 sin �] sin �

}
(20)

where the expectation values of the atomic variables 〈σx(t)〉, 〈σy(t)〉 and the atomic inversion
〈σz(t)〉 are given by equations (14),(15) and (16).

In a parallel definition for the field Wehrl entropy [10–12] we define the atomic Wehrl
entropy

SAW(t) =
∫ 2π

0

∫ π

0
Sq(�,�, t) sin � d� d� (21)

where Sq(�,�, t) is the atomic Wehrl density (see [13]), which is given by

Sq(�,�, t) = −QA(�,�, t) ln QA(�,�, t). (22)

The atomic Wehrl density and atomic Wehrl entropy are very important measurements in the
field of quantum information and quantum computation [13].

We see from equation (22) that the atomic Wehrl density is dependent on the atomic phase
space parameters � and �. Also, one can see that the atomic Wehrl entropy is a Shannon
entropy for the atomic Q-function; then it can be defined as Shannon Wehrl entropy. Also, we
see from equation (20) if � = 0 then QA(0,�, t) is � independent and dependent only on
the atomic variable 〈σz(t)〉 through the following relation:

QA(0, 0, t) = 1

π

{
1

2
+ 〈σz(t)〉

}
. (23)

Then the atomic Wehrl density in this case is connected with the expectation value of the
population inversion by the following relation:

Sq(0, 0, t) = − 1

π

(
1

2
+ 〈σz(t)〉

)
ln

{
1

π

(
1

2
+ 〈σz(t)〉

)}
. (24)
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By integrating the atomic Wehrl density for the variables � and �, we can write the
marginal distributions of the atomic Wehrl density as follows:

Sq(�) =
∫ π

0
Sq(�,�, t) sin � d� (25)

Sq(�) =
∫ 2π

0
Sq(�,�, t) d�. (26)

In what follows, we try to examine the influences of the Kerr nonlinearity parameter,
detuning and Stark shift on the marginal distribution Sq(�).

4. Numerical results and discussion

We present the numerical results of the atomic Wehrl entropy Sq(t) of (22) by using the
definition of the atomic QA-function. We examine the roles played by the detuning, Kerr
medium and Stark shift. In figures 1–7, we have studied the temporal behaviour of the atomic
Wehrl density of the field in one- and two-photon Jaynes Cummings models, but marginal
distribution of the atomic Wehrl density of (25) is discussed in figure 8. A comparison of the
atomic Wehrl entropy SAW(t) of (21) and von Neumann entropy SA(t) = −Tr ρA(t) ln ρA(t)

is presented in figure 9. We recall that time t has been scaled; one unit of time is given by the
inverse of the coupling constant λ. One can see that the Wehrl entropy does not take negative
values, which follows from the fact that 0 � QA(�,�, t) � 1/π and the QA(�,�, t)

function can never be so concentrated as to make SAW(t) negative. So for the maximum value
of the atomic Wehrl density Sq = ln(π)/π , we have plotted the time evolution of the atomic
Wehrl density Sq(�,�, t) against the scaled time for 0 � λt � 100, for k = 1 (one-photon
process) and k = 2 (two-photon process). We restrict our discussion when the atom is initially
in the superposition sate, so we set ϑ = π/2 and ϕ = η = π/4.

4.1. Effect of the mean photon number

Figure 1 shows the influence of the mean photon number n̄ on the atomic Wehrl density and
in the absence of both Kerr medium and Stark shift. It is to be noted that the atomic Wehrl
density evolves to a minimum value at the revival time tR = 2π

√
n̄ = (4π, 8π, 12π), see

figures 1(a)–(c). To see the atomic Wehrl density influenced by increasing the mean photon
number, we set n̄ = 25 in figure 1(b) and n̄ = 36 in figure 1(c). We see that the minimum value
at the revival time and the amplitudes of the atomic Wehrl density as the mean photon number
n̄ increase. Also, the more the mean photon number n̄ increased the more the oscillations at
the revival time increased.

The two-photon process (k = 2) is considerd in figure 2. We show the effect of the mean
photon number n̄ on the atomic Wehrl density Sq(t). It is observed that increasing the mean
photon number leads to the increase in the minimum value of the atomic Wehrl density. Also
the atomic Wehrl density Sq(t) is a periodic function and it takes a maximum value at the
revival time tR = nπ

λ
(n = 1, 2, . . .), and a minimum value at the half of revival time tR/2. It

is clear that there is a great difference between the one-photon process k = 1 and two-photon
process k = 2, see figure 1.

4.2. Effect of the detuning parameter

Figure 3 shows the influence of the detuning parameter on the atomic Wehrl density. We
set different values of the detuning parameter (� = 5, 10, 20), n̄ = 25. When � = 5, the
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0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

(a)  α=2S
q(t

)

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

(b)  α=5S
q(t

)

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

scaled time λ t

(c)  α=6S
q(t

)

Figure 1. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The atom is
initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters k = 1,� = χ = 0
and with different values of n̄ = |α|2.

0 1 2 3 4 5 6 7 8 9 10
0.33

0.335

0.34

0.345

0.35

0.355

0.36

0.365

0.37

scaled time λ t

S
q(t

)

|α|=2
|α|=3
|α|=5

Figure 2. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The
atom is initially in the superposition state ϑ = π/2, ϕ = η = π/4, with different values of the
mean photon number n̄ = |α|2, k = 2, in the case of neglecting the Stark effect and Kerr medium
parameters χ = � = 0.
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0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

(a)  ∆=5S
q(t

)

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

(b)  ∆=10

S
q(t

)

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

scaled time λ t

(c)  ∆=20

S
q(t

)

Figure 3. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The
atom is initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters
n̄ = 25, k = 1, χ = 0 and with different values of �.

atomic Wehrl density Sq(t) takes a minimum value at the revival time tR = 2π

√
n̄ + �2

4 , and
a maximum value at the half of revival time tR/2. As the detuning parameter is increased
the minimum value of the atomic Wehrl density is also increased. Also, the rapid oscillations
around the minimum value are decreased. In this case super oscillations are noted on increasing
the detuning parameter (see figures 3(b) and (c)).

The influence of the detuning parameter on the atomic Wehrl density in the case of two-
photon process is examined in figure 4. The influence of the detuning parameter is considered
through the parameter �. We set three values of the detuning parameter � = 5, 10, 20, the
mean photon number is taken to be n̄ = 25 and all the other parameters are the same as in
figure 2. We note that the minimum value of the atomic Wehrl entropy Sq(t) decreases as the
detuning parameter is increased.

4.3. Effect of the Kerr medium

To visualize the influence of the Kerr-like medium for the one-photon process (k = 1) on the
atomic Wehrl density, we considered the influence of the Kerr medium through the parameter
χ . We set different values of the Kerr-like medium parameter χ as follows: (a) χ = 0.05, (b)
χ = 0.1, (c) χ = 0.5. It is clear that the minimum values for the system with the Kerr-like
medium effect are higher than those without the Kerr effect. Also regularity is noted and
explored (see figure 5).

In order to see how the atomic Wehrl density influenced by the nonlinear medium
through the parameter χ , we set χ = 0.05 in figure 6(a) and χ = 0.1, 0.5, in figures 6(b)
and (c) for the two-photon process (k = 2). As the time increases the atomic Wehrl density
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0 1 2 3 4 5 6 7 8 9 10
0.33

0.335

0.34
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0.35

0.355

0.36
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scaled time λ t
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q(t

)

∆=5
∆=10
∆=20

Figure 4. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The atom
is initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters n̄ = 25, k = 2,

χ = 0 in the case of neglecting the Stark effect and with different values of �.

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

(a)  χ=0.05S
q(t

)
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0.34

0.36

(b)  χ=0.1

S
q(t

)

0 10 20 30 40 50 60 70 80 90 100
0.32

0.34

0.36

scaled time λ t

(c)  χ=0.5S
q(t

)

Figure 5. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The
atom is initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters
n̄ = 25, k = 1,� = 0 and with different values of χ .
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0 1 2 3 4 5 6 7 8 9 10
0.33

0.34

0.35

0.36

0.37
(a)  χ=0.05

S
q(t

)
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(b)  χ=0.1

S
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(c)  χ=0.5

S
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)

Figure 6. The time evolution of the atomic Wehrl density Sq(t) of a two-level atom interacting
with a single mode, the atomic phase space parameters being � = π/2 and � = π/4. The atom
is initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters n̄ = 25, k = 2,

� = 0 in the case of neglecting the Stark effect and with different values of χ .

returns to a maximum value at the first stage of the time evolution, see figure 6(a). As the
Kerr-like medium increases we get more oscillations at the period of time. When χ = 0.5,
the maximum value of the atomic Wehrl density increases and sharp peaks are observed with
some kind of periodicity with more oscillation at the same period of time

The Kerr effects on the atomic Wehrl density have been shown to give the long surviving
of the entanglement between the atom and the field, and the amplitude becomes much smaller,
which means that the Kerr-like medium can be used in the laboratory to generate maximum
entangled states. In our calculations the surprising result is that with increasing the Kerr-like
medium, the oscillations become smaller and closer to the maximum value with long surviving
of the entanglement. This result is quite interesting, since the recent experimental observation
of the entanglement stated that the principal aim of generating maximum entangled state is to
have the long surviving of the entanglement (see figure 6).

4.4. Effect of the Stark shift

As is visible from figures 7(a)–(c), the effects of the dynamic Stark shift for k = 2 are more
pronounced when β1 = 1/β2, and when the atom is initially in the superposition state. As β1

is increased the minimum values of the atomic Wehrl density increase but the maximum value
is independent of the values of the Stark shift parameter β1. Then the presence of the Stark
shift leads to disentanglement between the atom and the field. Hence, one can see that the
influence of the Stark shift on the von Neumann entropy is similar to the atomic Wehrl density
(see figures 7(d)–( f )).
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Figure 7. The time evolution of the atomic Wehrl density Sq(t) ((a), (b) and (c)) and von Neumann
entropy SA(t) ((d), (e) and ( f )) of a two-level atom interacting with a single-mode, the atomic
phase space parameters being � = π/2 and � = π/4. The atom is initially in the superposition
state ϑ = π/2, ϕ = η = π/4, for the parameters n̄ = 25, k = 2, � = χ = 0 and with different
values of β1 and β2 = 1/β1.
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Figure 8. The marginal distribution of the atomic Wehrl density Sq(�) against the scaled time λt

and �. The atom is initially in the superposition state ϑ = π/2, ϕ = η = π/4, for the parameters
n̄ = 25, k = 2 and for different values of χ,� and β1.
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Figure 9. The evolution of the von Neumann entropy SA(t) ((a) and (b)), atomic Wehrl entropy
SAW(t) ((c) and (d)) as a function of the scaled time λt . The atom is initially in the superposition
state ϑ = π/2, ϕ = η = π/4, for the parameters n̄ = 25, � = χ = 0 in the case of neglecting the
Stark shift for k = 2.

4.5. Marginal distribution Sq(�)

A comparison between the Kerr-like medium, Stark shift and the detuning is plotted in figure 8.
It should be noted that the detuning has the usual effect by elongating the revival time. On
the other hand, the Kerr effect adds small oscillations at the earlier interaction time and then
Sq(�) takes constant values close to the maximum value. While, the regular behaviour with
some kind of periodicity is achieved when Stark shift takes place (see figure 8).

Here it is interesting to mention a recent paper [24] in which the authors proposed to
quantify the entanglement of pure states of N × N bipartite quantum systems by defining its
Husimi distribution.

In figure 9, we see that the atomic Wehrl entropy increases with the time in the one-photon
case while the periodic behaviour has been observed in the two-photon case in agreement with
the behaviour of the von Neumann entropy.

5. Conclusion

We have investigated the evolution of the atomic Wehrl entropy in multi-quanta transition
in the presence of the Kerr-like medium and Stark shift. We examined different effects
on the dynamics of the atomic Wehrl entropy and its density. It has been observed that
the atomic Wehrl entropy gives equivalent results to the von Neumann entropy for all the
involved parameters of our system, so that we focus our attention on the atomic Wehrl
density. In general, we found that the Kerr medium influences the atomic Wehrl density
significantly.
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